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Abstract - In many industries today around the globe, robots 

can be seen carrying out different tasks. These robots have 

the capabilities to lift heavy loads, move at a very 

unbelievable speed, and execute tasks at a high level of 

pinpoint accuracy. But despite their amazing repertoire of 

tasks, most robots will find it very difficult to adapt 

themselves to new and environments that are unfamiliar to 

them. This could be because human environments are so 

dynamic and unpredictable and very difficult to be 

programmed, but rather must be learned firsthand by the 

robot. The desire to build machines that learn behavior 

based on the environment presented to them is one of the 

goals of Reinforcement Learning (RL). Reinforcement 

learning, an aspect of machine learning which is inspired by 

behavioral psychology, allows an agent – the learner and 

decision-maker, to automatically and autonomously discover 

optimal behavior through trial and error interactions with its 

environments in an attempt to solve problems. We present in 

this paper a control framework for Snake-like robot 

locomotion based on Deep Reinforcement Learning. 
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I. INTRODUCTION 
A snake-like robot inspired by a biological snake is a 

class of hyper-redundant robots that have the potentials for 

meeting the ever-increasing need for robotic locomotion in a 

challenging environment and performing diverse tasks in a 

difficult and challenging environment such as underwater 

exploration tasks, industrial pipe inspection, firefighting, etc. 

The snake-like robot is made up of serially connected 

modules, and these modules can bend in one or more planes 

to generate locomotion gaits. The snake-like robot has many 

degrees of freedom, and this gives snake-like robots great 

potentials to navigate a wide range of environments by 

actively changing their overall shape, which surpasses the 

locomotion ability of more conventional robots with wheels, 

tracked robots, or robots with legs. However, this attributes 

of snake-like robot that makes them powerful also make 

designing locomotion control model for snake-like robot 

very difficult. 

Snake-like robot achieves locomotion by changing their 

body shape which causes the body to interact with its 

environment and by so doing, propelling the robot in some 

direction. Common strategies for controlling snake-like robot 

locomotion include undulating the joints angle of the robot 

according to parameterized sine wave [2], central pattern 

generators [5], and follow-the-ladder controllers [1]. 

Although many successes have been recorded in the area of 

developing adaptive and complaint locomotion controllers 

for snake-like robot locomotion, it remains short of 

replicating the true versatile locomotion ability of biological 

snakes. This work, therefore, presents a control framework 

for Snake-like robot locomotion based on Deep 

Reinforcement Learning. 

 

II. RELATED WORKS 

Biological snakes can achieve diverse and different 

locomotion gaits by wiggling their bodies on rough or 

smooth terrains. To acquire similar locomotion gaits, most 

research work on snake-like robot have employed kinematic-

based methods which simplifies the parametric 

representations of the snake-like robot trajectories. This 

method can be seen in the works of Hirose, 1993 [1], where 

the terpenoid curve was used to describe the locomotion 

properties of the snake. Main [3] modeled the muscle 

characteristics of snakes and developed a curve known as 

serpentine curve and used it to describe snake-like robot 

locomotion [3]. Tesch et al., 2009 in [6] described snake-like 

robot joint angles as a parameterized sinusoidal function. 

From the perspective of kinematic-based methods, 

researchers have also developed locomotion control models 

based on a central pattern generator (CPG) [7, 8]. Even 

though these methods have achieved significant results, the 

gait efficiency achieved by this method is limited to only 

tuning the parameters manually, which makes it time-

consuming and inefficient. 

 

Studies on designing optimized locomotion gaits for 

snake-like robots have also been carried out. In [9], 

multidimensional friction, known as evolutionary algorithms, 

was adopted to design efficient locomotion gait while [10, 

11] studied and implemented policy gradient search 
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algorithms for optimized locomotion gait. However, these 

algorithms are associated with the problem of local optima, 

and because of this, the process can be very slow, inefficient, 

and manually intensive. 

 

Reinforcement learning has also been explored for 

designing effective locomotion gaits for snake-like robots. 

Reinforcement learning is an intelligent trial and error 

learning method that is particularly useful for tasks in which 

it is easy to assess if a goal was reached, but the best ways to 

reach it are hard to determine. Reinforcement learning brings 

an entirely new solution for free gait generation tasks without 

having prior knowledge of the models. At the initial stage, 

reinforcement learning was not widely used in the robotics 

domain due to the fact that robots often require high 

dimensional, continuous states and actions [12].  However, 

with recent advancements in reinforcement learning 

algorithms, complicated tasks like locomotion gaits 

generation [13], dexterous manipulation [14], and 

autonomous driving [15] can be handled by robots. 

Schuhmann et al. in [16] used RL-based methods Proximal 

Policy Optimization (PPO) algorithm to generate locomotion 

gait for robots and equally used the same algorithm to learn 

energy-efficient gaits. Wu et al. proposed a novel triplet-

average Deep Deterministic Policy Gradient (DDPG) 

algorithm while investigating the underestimation problem in 

Q-learning methods in order to reduce estimation bias. Their 

proposed method improved the performance of many robotic 

control tasks [17]. Cully et al. in [4] carried out two 

prototype experiments using reinforcement learning methods 

and showed in their results that Reinforcement Learning 

methods could help robots to recover from damage and 

quickly adapt as animals do. In their experiments, a robotic 

arm was able to learn to reach the given target with one or 

more stuck joints, and a hexapod robot was able to learn how 

to walk very fast and straight with broken or missing legs. 

 

III. DESCRIPTION OF SNAKE-LIKE ROBOT MODEL 

A case study of a snake-like robot model adapted from 

the Active Cord Mechanism (ACM) snake-like robot by 

Hirose [1] was used. The snake model is a planner snake-like 

robot consisting of n number of links with l lengths and 

interconnected by n-1 joints. The kinematics of the snake-

like robot used is defined according to the symbols in Figure 

1. The n links have the same mass m and moment of inertia J, 

with each link having a mass that is uniformly distributed, 

and as such, the link Center of Mass (CM) is located at its 

center point. The snake-like robot moves in a horizontal 

plane and has n+2 degrees of freedom. The position of the 

Center of Mass of the robot is denoted by 

    (1)  

The absolute angle represented as of link I have expressed 

with respect to the global axis with positive 

counterclockwise direction. The relative angle between link i 

and link i + 1 (i.e., the angle of joint i) is defined as  

 

     (2) 

 

The Center of Mass of the links is subjected to a 

Coulomb ground friction force, having anisotropic friction 

coefficients  and , which describes the Coulomb friction 

force in the tangential and normal direction of the links, 

respectively. With the snake-like robot, it is common to 

assume that , which is also a property found in 

biological snakes [1]. 

 

The motion equation of the snake-like robot in terms of 

the joint angle , absolute angle of the robot head 

link , and the Center of Mass position is expressed as 

equation (3). 

 

,  

   (3) 

 

Where  is a transformed control input that 

corresponds to the acceleration of the joints angle, 

 is the nonlinear function 

of the state vector, and the control input, fx, i and fy, i are the 

Coulomb friction force components on the link i in the global 

x and y direction respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Kinematics definition of Snake-like Robot model 

 

IV. PROPOSED RL-BASED MOTION FRAMEWORK 

A. Reinforcement Learning Setup 

To solve a Reinforcement Learning problem, it is critical 

to segregate the agent from its environment and define the 

actions, states, and rewards. In the proposed RL-based 

motion controller (Figure II), the Agent is the entity that 

controls the snake-like robot. It implements the learning 

algorithm, takes actions, perceives the state, and receives the 
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rewards. The Environment consists of the snake robot, the 

target object, and other obstacles. The environment reacts to 

the actions taken by the agent.  

 

B. The State (observation) Space 

The Reinforcement Learning (RL) Agent receives 

information from the environment through the state 

(observation) space at each time step. Choosing the right 

state space is a very critical task in Reinforcement Learning 

as agents require accurate information to be able to learn its 

behavior. The state-space used in this work is made up of 

images from the vision sensor and the angles of the robot 

joints, as well as the target angles that each joint is currently 

rotating towards and the current speed of the head module. 

The state space is given in Table 1. The vision sensor 

has an angle of 90o and a resolution of 32 x 32 pixels. For the 

snake-like robot to learn locomotion, it requires the joints 

position and the angular joints velocity . The head link 

velocity is used to sense the global velocity, which offers 

the snake-like robot better movement awareness. For the 

snake-like robot to be able to locomote and move forward, 

actuated joints  are utilized. To control the velocity of the 

robot, a target velocity is specified and passed to the 

environment, which can be changed dynamically. Therefore, 

the state space (observation) size used in this work is 29-

DOF. 

Fig. 2 Snake-like Robot Motion Control Model 
 

Table 1. State (observation) Space for the RL-Motion Controller 

Parameter  Description 

 
Joint angle position 

 
Joint angle velocity  

 
Head module velocity 

 
Actuator torque 

 
Target velocity 

 

C. Action Space 

The snake-like robot is on a one-dimensional track, 

which is positioned between some obstacles. The goal of the 

robot is to move to a set target while learning a snake 

locomotion gait. Therefore, the action space is in a vector 

[snake robot position, snake robot velocity: moving forward 

or stop]. Since the snake-like robot is moving in a curve-like 

feature, the position is given by a continuous value [-1.2, 

0.6], and the velocity is a bounded continuous value of [-

0.07, 0.07].  Hence, the action space of the RL-based 

motion controller corresponds to the nine joints positions of 

the snake robot, which linearly translates to a finite 

continuous value in the range of [-1.5, 15] to [-90o, 90o]. 

 

D. Reward Function 

Reward function plays a very vital role in a 

reinforcement learning model. It is an immediate response 

sent back from the environment to evaluate the last action 

taken by the agent. In this work, the behavior that the reward 

function should incite in the agent is to move towards a 

target object. Therefore, it compares the location of the 

snake-like robot before and after a time step. It rewards any 

movement towards the right direction and penalizes 

movement towards the wrong direction. Figure 2 shows the 

schematic representation of the reward function used in this 

work. 

Let  and denote the location of the snake-like robot 

before the time step respectively in x and y coordinates,  

and  the position after the time step in the respective x and 

y coordinates as well as and the target coordinates 

before the time step respectively in x and y. 

 

To obtain the distance the robot has moved over the 

course of a one-time step, the distance between the robot and 

the goal before the time step (equation 4) is compared to the 

distance between the robot and the goal after the time step 

(equation 5). During the time step, the robot moved, whereas 

the target position stayed at a constant position and is 

updated after calculating the reward. The reward signal, 

therefore, is equal to the difference between the distance 

before and after the time step (equation 6). 

 

              (4)

  

 

        (5) 

 

                (6) 

 

From (6), the agent gets a positive reward for any 

movement towards the goal, penalizes movement away from 

the target. However, movement away from the goal that 

would eventually result in a better position can also yield a 

higher overall reward. Because the discount factor is set to 
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0.99, expected future rewards are less important to the 

algorithm than immediate rewards but can still strongly 

influence its policy. 

 

E. Network Architecture  

To map the state space  (input) to the action space   

(output), MlpPolicy from OpenAI Baselines will be used as 

the policy network. MlpPolicy configured as a fully 

connected 2-hidden layer neural network with the hidden 

layer size of 64 will be used as a non-linear function 

approximator to the policy . Both hidden layers have 

standard Rectified Linear Units (ReLu), and the final layers 

output the joint position commands for the robot. To train the 

network, the DDPG algorithm described in the next section 

will be used. 

 

F. Training Algorithm 

DDPG, a deep reinforcement learning algorithm 

proposed by Lillicrap et al. 2016 [18], will be used for 

training. Both Q-learning and policy gradient are combined 

in Deep Deterministic Policy Gradient frameworks and use 

neural networks as a function approximator. Q-learning is 

basically a method to learn using Bellman Equation 

(equation 7).  

 

        (7) 

 

where   = learning rate,  = discount factor, a  = action, s 

= state 

DDPG maintains actor and critic networks (Fig. 4). The 

actor, which is represented as maps, states actions 

where  represents the network parameters for the actor-

network. The critic network represented as 

outputs the value of the action under the state where  

represents network parameters for the critic network. An 

experience replay buffer is used by the DDPG framework to 

store transitions and to update the model. A target actor-

network and are created by copying the actor and critic 

networks respectively so that a consistent temporal 

difference backup is provided. 

An agent takes action on and then receives a reward 

based on  the transition ) is then 

stored in a replay buffer R. N sample transitions are drawn 

from R, and expected return is calculated by equation 8, and 

the critic network is then updated by minimizing the loss 

function  between outputs of the target critic network 

and the critic network  (equation 9). 

 

          (8) 

         (9) 

 

The actor-network is updated by using a sampled policy 

gradient (equation 10), and the target actor-network and the 

target critic network are updated as in Equations 11 and 12.  

 

     (10) 

        (11) 

        (12) 

Where  denotes learning rate. 

Fig. 3 Actor-Critic Model (DDPG Algorithm) 

 

V. PROPOSED SYSTEM ARCHITECTURE 

The implementation and evaluation of this work will be 

based on simulations. A robotic simulator V-REP by 

Coppelia Robotics will be used. V-REP can be used as a 

simulator as well as a means for scene creation, and it 

provides different choices of the physics engine to choose 

from. A robotic scene in V-REP consists of different objects 

that can be controlled individually with the use of embedded 

Lua scripts. The script connected to an object is called a child 

script. The snake-like robot is controlled partially with 

embedded Lua child script in V-REP. In addition to 

providing some control directly, the Lua script also performs 

message exchange with Reinforcement Learning (RL) 

algorithm. The RL algorithm runs in python and controls the 

robot via the V-REP RemoteAPI, through which it also 

receives the environment states.  

 

Each scene in V-REP has an environment file written in 

Python that is needed to control dynamic factors and as well 

as serve as an interface between the RL Algorithm and the 

software used for simulation. Python was used to implement 

all the interfaces and will be registered as the environment in 

OpenAI Gym. The gym will serve as an interface and 

abstraction layer between the Reinforcement Learning agent 

and its simulation environment. The agent will be able to call 

methods such as step (action) on a gym environment 

regardless of the implementation details of the environment.  
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Fig. 4 Snake-like robot motion control system architecture 

 

VI. CONCLUSION 

Developing a locomotion control model for a snake-like 

robot remains a difficult and very challenging task. This is 

due to the fact that snake-like robots naturally come with 

redundant degrees of freedom and have very complicated 

interactions with their environments. The essence of this 

research work is to develop a locomotion control framework 

for snake-like robots based on deep reinforcement learning. 

The developed framework will contribute immensely to the 

ever-growing quest to build a more sophisticated and 

complex model for snake-like robot locomotion in real and 

challenging environments. Our future work will be to 

implement the framework and evaluate the performance of 

the model in a simulation environment and a real snake-like 

robot. 
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